Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
JBMR Plus ; 8(1): ziad015, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38694428

ABSTRACT

Maturation defects are intrinsic features of osteoblast lineage cells in CKD patients. These defects persist ex vivo, suggesting that CKD induces epigenetic changes in bone cells. To gain insights into which signaling pathways contribute to CKD-mediated, epigenetically driven, impairments in osteoblast maturation, we characterized RNA expression and DNA methylation patterns by RNA-Seq and MethylationEpic in primary osteoblasts from nine adolescent and young adult dialysis patients with end-stage kidney disease and three healthy references. ATAC-Seq was also performed on a subset of osteoblasts. Bone matrix protein expression was extracted from the iliac crest and evaluated by proteomics. Gene set enrichment analysis was used to establish signaling pathways consistently altered in chromatin accessibility, DNA methylation, and RNA expression patterns. Single genes were suppressed in primary osteoblasts using shRNA and mineralization characterized in vitro. The effect of nuclear factor of activated T cells (NFAT) signaling suppression was also assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) incorporation. We found that signaling pathways critical for osteoblast differentiation were strongly downregulated in CKD osteoblasts. Gene set enrichment analysis identified highly significant methylation changes, differential chromatin accessibility, and altered RNA expression in NFAT signaling targets. NFAT inhibition reduced osteoblast proliferation. Combined analysis of osteoblast RNA expression and whole bone matrix composition identified 13 potential ligand-receptor pairs. In summary, epigenetic changes in CKD osteoblasts associate with altered expression of multiple osteoblast genes and signaling pathways. An increase in NFAT signaling may play a role in impaired CKD osteoblast maturation. Epigenetic changes also associate with an altered bone matrix, which may contribute to bone fragility. Further studies are necessary to elucidate the pathways affected by these genetic alterations since elucidating these pathways will be vital to correcting the underlying biology of bone disease in the CKD population.

2.
Article in English | MEDLINE | ID: mdl-38687125

ABSTRACT

BACKGROUND: Iron deficiency is common in children with kidney failure, but current guidelines are based on biomarkers of iron stores that may be influenced by inflammation. This is the first study that examined which serum iron indices were associated with stainable marrow iron stores (the gold standard) in this population with kidney failure who underwent bone biopsies. METHODS: This cross-sectional study enrolled 71 clinically stable children and young adults receiving dialysis who underwent bone biopsy for chronic kidney disease-mineral bone disorder between 2007 through 2011. Bone biopsies were stained with Perls' Prussian blue and independently interpreted by a pathologist blinded to participants' iron parameters and clinical status. Marrow staining was scored absent vs. present to facilitate receiver operator curve (ROC) analysis. In ROC analysis, the ability of serum ferritin to detect stainable marrow iron stores was compared with that of transferrin saturation (TSAT), serum hepcidin, and clinical guideline-based iron deficiency cut-offs for serum iron, TSAT, and their combinations. RESULTS: Mean age was 17.2 ± 4.4 years (range 2-28), and 30% of patients were female. Median dialysis vintage was 1.2 (IQR 0.7, 2.0) years, and 56% were supported by peritoneal dialysis. Mean hemoglobin was 12.4 ± 1.7 g/dl, and 35% were receiving iron supplementation at the time of biopsy. Based on the gold standard of depleted marrow iron stores, 46.5% of patients were iron-deficient. As an indicator of marrow iron staining, serum ferritin provided a higher area under the ROC curve than serum hepcidin, TSAT, or clinical guidelines-based evaluation of TSAT + ferritin. CONCLUSIONS: In this cohort of children and young adults with kidney failure, serum ferritin provided the best indication of stainable marrow iron stores, followed by transferrin saturation.

3.
BMC Oral Health ; 24(1): 474, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641652

ABSTRACT

BACKGROUND: Important evidence has been constantly produced and needs to be converted into practice. Professional consumption of such evidence may be a barrier to its implementation. Then, effective implementation of evidence-based interventions in clinical practice leans on the understanding of how professionals value attributes when choosing between options for dental care, permitting to guide this implementation process by maximizing strengthens and minimizing barriers related to that. METHODS: This is part of a broader project investigating the potential of incorporating scientific evidence into clinical practice and public policy recommendations and guidelines, identifying strengths and barriers in such an implementation process. The present research protocol comprises a Discrete Choice Experiment (DCE) from the Brazilian oral health professionals' perspective, aiming to assess how different factors are associated with professional decision-making in dental care, including the role of scientific evidence. Different choice sets will be developed, either focusing on understanding the role of scientific evidence in the professional decision-making process or on understanding specific attributes associated with different interventions recently tested in randomized clinical trials and available as newly produced scientific evidence to be used in clinical practice. DISCUSSION: Translating research into practice usually requires time and effort. Shortening this process may be useful for faster incorporation into clinical practice and beneficial to the population. Understanding the context and professionals' decision-making preferences is crucial to designing more effective implementation and/or educational initiatives. Ultimately, we expect to design an efficient implementation strategy that overcomes threats and potential opportunities identified during the DCEs, creating a customized structure for dental professionals. TRIAL REGISTRATION: https://osf.io/bhncv .


Subject(s)
Evidence-Based Practice , Pediatric Dentistry , Child , Humans , Research Design , Dental Care , Brazil
4.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419397

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Subject(s)
Activating Transcription Factor 4 , Neurodegenerative Diseases , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Lipids , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Male , Mice, Inbred C57BL , Cells, Cultured , GTP Phosphohydrolases/metabolism
5.
JBI Evid Implement ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38193257

ABSTRACT

INTRODUCTION: Post-operative pain is the most prevalent type of acute pain. Nurses are the health care professionals who most frequently assess pain, as well as evaluating the patient's response to pain management treatment and monitoring for the occurrence of adverse events. Thus, to improve outcomes and quality of care, the interventions used by nurses should be based on best practices. OBJECTIVES: The aim of this project was to implement best practices in post-operative pain management in an intensive care unit. METHODS: This evidence implementation project was conducted in a hospital for the surgical treatment of orthopedic diseases and trauma. The project followed the JBI evidence implementation framework. The project used JBI PACES software as well as JBI's Getting Research into Practice (GRiP) audit and feedback tools to develop eight audit criteria for the baseline and follow-up audits. RESULTS: The baseline audit showed that criteria 3 and 6 had low compliance, with few patients having documented plans and goals, and receiving multimodal analgesia in the ICU, respectively. Criteria 7 and 8, which assessed the use of opioids and follow-up by a pain specialist, revealed compliance of 60% and 50%, respectively. Criterion 3 improved from 0% to 20%. Criteria 6, 7, and 8 also improved, rising to 30%, 22.8%, and 50%, respectively. CONCLUSION: The project improved compliance with best practices in post-operative pain management. Further studies are needed to ensure the project's long-term sustainability.

6.
Sci Rep ; 14(1): 1563, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238383

ABSTRACT

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Subject(s)
Activating Transcription Factor 4 , Fibroblast Growth Factors , Thermogenesis , Animals , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Amino Acids/metabolism , Cold Temperature , Mice, Inbred C57BL , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
7.
Diabetes ; 73(2): 151-161, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38241507

ABSTRACT

Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitochondrial Dynamics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondrial Proteins/metabolism
8.
Pest Manag Sci ; 80(4): 2188-2198, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38158650

ABSTRACT

BACKGROUND: The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS: Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION: This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.


Subject(s)
Hymenoptera , Insecticides , Nitro Compounds , Humans , Bees , Animals , Insecticides/toxicity , Malathion/toxicity , Neonicotinoids/toxicity , Eating
9.
Front Biosci (Landmark Ed) ; 28(11): 312, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38062821

ABSTRACT

BACKGROUND: Obesity is a worldwide concern due to its global rapid expansion and remarkable impact on individual's health by predisposing to several other diseases. About twice as many women as men suffer from severe obesity and, in fact, there are stages in a woman's life when weight gain and adiposity can result in greater damage to health. For example, obesity triples the chance of a woman developing gestational diabetes. Many hormones promote the metabolic adaptations of pregnancy, including progesterone, whose role in female obesity is still not well known despite being involved in many physiological and pathological processes. METHODS: Here we investigated whether progesterone treatment at low dose can worsen the glucose metabolism and the morpho functional aspects of adipose tissue and pancreas in obese females. Mice were assigned into four groups: normocaloric diet control (NO-CO), high-fat and -fructose diet control (HFF-CO), normocaloric diet plus progesterone (NO-PG) and high-fat and -fructose diet plus progesterone (HFF-PG) for 10 weeks. Infusion of progesterone (0.25 mg/kg/day) was done by osmotic minipump in the last 21 days of protocol. RESULTS: Animals fed a hypercaloric diet exhibited obesity with increased body weight (p < 0.0001), adipocyte hypertrophy (p < 0.0001), hyperglycemia (p = 0.03), and glucose intolerance (p = 0.001). HFF-CO and HFF-PG groups showed lower adiponectin concentration (p < 0.0001) and glucose-stimulated insulin secretion (p = 0.03), without differences in islet size. Progesterone attenuated glucose intolerance in the HFF-PG group (p = 0.03), however, did not change morphology or endocrine function of adipose tissue and pancreatic islets. CONCLUSIONS: Taken together, our results showed that low dose of progesterone does not worsen the effects of hypercaloric diet in glycemic metabolism, morphology and function of adipose tissue and pancreatic islets in female animals. These results may improve the understanding of the mechanisms underlying the pathogenesis of obesity in women and eventually open new avenues for therapeutic strategies and better comprehension of the interactions between progesterone effects and obesity.


Subject(s)
Glucose Intolerance , Islets of Langerhans , Humans , Male , Pregnancy , Female , Mice , Animals , Progesterone , Glucose Intolerance/complications , Glucose Intolerance/pathology , Mice, Obese , Diet, High-Fat/adverse effects , Obesity/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Adipose Tissue/metabolism , Weight Gain , Fructose , Mice, Inbred C57BL , Insulin/metabolism
10.
Nutrients ; 15(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37836411

ABSTRACT

The pathophysiology of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not well understood. Specific factors secreted by osteocytes are elevated in the serum of adults and pediatric patients with CKD-MBD, including FGF-23 and sclerostin, a known inhibitor of the Wnt signaling pathway. The molecular mechanisms that promote bone disease during the progression of CKD are incompletely understood. In this study, we performed a cross-sectional analysis of 87 pediatric patients with pre-dialysis CKD and post-dialysis (CKD 5D). We assessed the associations between serum and bone sclerostin levels and biomarkers of bone turnover and bone histomorphometry. We report that serum sclerostin levels were elevated in both early and late CKD. Higher circulating and bone sclerostin levels were associated with histomorphometric parameters of bone turnover and mineralization. Immunofluorescence analyses of bone biopsies evaluated osteocyte staining of antibodies towards the canonical Wnt target, ß-catenin, in the phosphorylated (inhibited) or unphosphorylated (active) forms. Bone sclerostin was found to be colocalized with phosphorylated ß-catenin, which suggests that Wnt signaling was inhibited. In patients with low serum sclerostin levels, increased unphosphorylated "active" ß-catenin staining was observed in osteocytes. These data provide new mechanistic insight into the pathogenesis of CKD-MBD and suggest that sclerostin may offer a potential biomarker or therapeutic target in pediatric renal osteodystrophy.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Adult , Humans , Child , Chronic Kidney Disease-Mineral and Bone Disorder/metabolism , Osteocytes/metabolism , Osteocytes/pathology , Wnt Signaling Pathway , beta Catenin/metabolism , Cross-Sectional Studies , Biomarkers , Renal Insufficiency, Chronic/complications
11.
Front Endocrinol (Lausanne) ; 14: 1264530, 2023.
Article in English | MEDLINE | ID: mdl-37818094

ABSTRACT

Various models of mitochondrial stress result in induction of the stress-responsive cytokines fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). This is an adaptive mechanism downstream of the mitochondrial integrated stress response frequently associated with improvements in systemic metabolic health. Both FGF21 and GDF15 have been shown to modulate energy balance and glucose homeostasis, and their pharmacological administration leads to promising beneficial effects against obesity and associated metabolic diseases in pre-clinical models. Furthermore, endogenous upregulation of FGF21 and GDF15 is associated with resistance to diet-induced obesity (DIO), improved glucose homeostasis and increased insulin sensitivity. In this review, we highlight several studies on transgenic mouse models of mitochondrial stress and will compare the specific roles played by FGF21 and GDF15 on the systemic metabolic adaptations reported in these models.


Subject(s)
Growth Differentiation Factor 15 , Obesity , Mice , Animals , Growth Differentiation Factor 15/genetics , Obesity/metabolism , Fibroblast Growth Factors/metabolism , Mice, Transgenic , Glucose/metabolism
12.
Elife ; 122023 10 11.
Article in English | MEDLINE | ID: mdl-37819027

ABSTRACT

We previously reported that mice lacking the protein optic atrophy 1 (OPA1 BKO) in brown adipose tissue (BAT) display induction of the activating transcription factor 4 (ATF4), which promotes fibroblast growth factor 21 (FGF21) secretion as a batokine. FGF21 increases metabolic rates under baseline conditions but is dispensable for the resistance to diet-induced obesity (DIO) reported in OPA1 BKO mice (Pereira et al., 2021). To determine alternative mediators of this phenotype, we performed transcriptome analysis, which revealed increased levels of growth differentiation factor 15 (GDF15), along with increased protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) levels in BAT. To investigate whether ATF4 induction was mediated by PERK and evaluate the contribution of GDF15 to the resistance to DIO, we selectively deleted PERK or GDF15 in OPA1 BKO mice. Mice with reduced OPA1 and PERK levels in BAT had preserved ISR activation. Importantly, simultaneous deletion of OPA1 and GDF15 partially reversed the resistance to DIO and abrogated the improvements in glucose tolerance. Furthermore, GDF15 was required to improve cold-induced thermogenesis in OPA1 BKO mice. Taken together, our data indicate that PERK is dispensable to induce the ISR, but GDF15 contributes to the resistance to DIO, and is required for glucose homeostasis and thermoregulation in OPA1 BKO mice by increasing energy expenditure.


Subject(s)
Adipocytes, Brown , Growth Differentiation Factor 15 , Animals , Mice , Activating Transcription Factor 4/metabolism , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Glucose/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Thermogenesis/physiology
13.
Br J Haematol ; 203(1): 119-130, 2023 10.
Article in English | MEDLINE | ID: mdl-37735543

ABSTRACT

Thrombopoietin receptor agonists (TPO-RAs) stimulate platelet production, which might restore immunological tolerance in primary immune thrombocytopenia (ITP). The iROM study investigated romiplostim's immunomodulatory effects. Thirteen patients (median age, 31 years) who previously received first-line treatment received romiplostim for 22 weeks, followed by monitoring until week 52. In addition to immunological data, secondary end-points included the sustained remission off-treatment (SROT) rate at 1 year, romiplostim dose, platelet count and bleedings. Scheduled discontinuation of romiplostim and SROT were achieved in six patients with newly diagnosed ITP, whereas the remaining seven patients relapsed. Romiplostim dose titration was lower and platelet count response was stronger in patients with SROT than in relapsed patients. In all patients, regulatory T lymphocyte (Treg) counts increased until study completion and the counts were higher in patients with SROT. Interleukin (IL)-4, IL-9 and IL-17F levels decreased significantly in all patients. FOXP3 (Treg), GATA3 (Th2) mRNA expression and transforming growth factor-ß levels increased in patients with SROT. Treatment with romiplostim modulates the immune system and possibly influences ITP prognosis. A rapid increase in platelet counts is likely important for inducing immune tolerance. Better outcomes might be achieved at an early stage of autoimmunity, but clinical studies are needed for confirmation.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Humans , Adult , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Immunomodulation , Immune Tolerance , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
14.
Exp Brain Res ; 241(11-12): 2591-2604, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37725136

ABSTRACT

Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 µA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.


Subject(s)
Hyperalgesia , Neuralgia , Rats , Male , Animals , N-Methylaspartate/pharmacology , Pain Measurement , Rats, Wistar , Neuralgia/therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Prefrontal Cortex/metabolism
15.
iScience ; 26(7): 107219, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37529320

ABSTRACT

The vast spectrum of clinical features of COVID-19 keeps challenging scientists and clinicians. Low resistance to infection might result in long-term viral persistence, but the underlying mechanisms remain unclear. Here, we studied the immune response of immunocompetent COVID-19 patients with prolonged SARS-CoV-2 infection by immunophenotyping, cytokine and serological analysis. Despite viral loads and symptoms comparable to regular mildly symptomatic patients, long-term carriers displayed weaker systemic IFN-I responses and fewer circulating pDCs and NK cells at disease onset. Type 1 cytokines remained low, while type-3 cytokines were in turn enhanced. Of interest, we observed no defects in antigen-specific cytotoxic T cell responses, and circulating antibodies displayed higher affinity against different variants of SARS-CoV-2 Spike protein in these patients. The identification of distinct immune responses in long-term carriers adds up to our understanding of essential host protective mechanisms to ensure tissue damage control despite prolonged viral infection.

16.
Kidney Int ; 104(5): 910-915, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648154

ABSTRACT

Osteocytes are the most abundant type of bone cell and play crucial roles in bone health. Osteocytes sense mechanical stress and orchestrate osteoblasts and osteoclasts to maintain bone density and strength. Beyond this, osteocytes have also emerged as key regulators of organ crosstalk, and they function as endocrine organs via their roles in secreting factors that mediate signaling within their neighboring bone cells and in distant tissues. As such, osteocyte dysfunction has been associated with the bone abnormalities seen across a spectrum of chronic kidney disease. Specifically, dysregulated osteocyte morphology and signaling have been observed in the earliest stages of chronic kidney disease and have been suggested to contribute to kidney disease progression. More important, US Food and Drug Administration-approved inhibitors of osteocytic secreted proteins, such as fibroblast growth factor 23 and sclerostin, have been used to treat bone diseases. The present mini review highlights new research that links dysfunctional osteocytes to the pathogenesis of chronic kidney disease mineral and bone disorder.

18.
PLoS One ; 18(7): e0289003, 2023.
Article in English | MEDLINE | ID: mdl-37490504

ABSTRACT

The genetically modified cotton DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 expressing Cry1Ac, Cry1F and Vip3Aa19 from Bacillus thuringiensis Berliner (Bt) has been cultivated in Brazil since the 2020/2021 season. Here, we assessed the performance of DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton expressing Cry1Ac, Cry1F and Vip3Aa19 against Helicoverpa armigera (Hübner), Helicoverpa zea (Boddie), and their hybrid progeny. We also carried out evaluations with DAS-21023-5 × DAS-24236-5 cotton containing Cry1Ac and Cry1F. In leaf-disk bioassays, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 was effective in controlling neonates from laboratory colonies of H. armigera, H. zea and the hybrid progeny (71.9%-100% mortality). On floral bud bioassays using L2 larvae, H. zea presented complete mortality, whereas H. armigera and the hybrid progeny showed <55% mortality. On DAS-21023-5 × DAS-24236-5 cotton, the mortality of H. armigera on leaf-disk and floral buds ranged from 60% to 73%, whereas mortality of hybrids was <46%. This Bt cotton caused complete mortality of H. zea larvae from a laboratory colony in the early growth stages, but mortalities were <55% on advanced growth stages and on floral buds. In field studies conducted from 2014 to 2019, DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton was also effective at protecting plants against H. armigera. In contrast, a population of H. zea collected in western Bahia in 2021/2022 on Bt cotton expressing Cry1 and Vip3Aa proteins, showed 63% mortality after 30 d, with insects developing into fifth and sixth instars, on DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton. We conclude that H. armigera, H. zea, and their hybrid progeny can be managed with DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton; however we found the first evidence in Brazil of a significant reduction in the susceptibility to DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton of a population of H. zea collected from Bt cotton in Bahia in 2021/2022.


Subject(s)
Insecticides , Moths , Animals , Humans , Infant, Newborn , Insecticides/pharmacology , Brazil , Zea mays/genetics , Endotoxins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacillus thuringiensis Toxins , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Moths/genetics , Larva/genetics , Gossypium/genetics , Plants, Genetically Modified/genetics
19.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515173

ABSTRACT

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Antibody Formation , COVID-19/prevention & control , Antibodies, Viral , Immunization , Enzyme-Linked Immunosorbent Assay , Antibodies, Neutralizing
20.
J Immunol ; 211(5): 721-726, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486206

ABSTRACT

CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.


Subject(s)
Polycomb Repressive Complex 1 , Ubiquitin-Protein Ligases , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...